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     The traditional paradigm for space mission operations relies on inefficient, highly 

scripted pre-planned activities between space communications & navigation service 

providers and user ground mission operations centers. Typically, there is limited or non-

existent automation capabilities on the user spacecraft for requesting space communications 

services, and on the provider network for request dispositioning and service provisioning. In 

the past, using these processes for space networks was sufficient with the relatively small 

number of user spacecraft requesting services. However, with an ever increasing number of 

satellites launched to orbit, more complex event-driven science objectives, exploration 

missions involving collaborative platforms, and more distant missions, approaches that 

improve automation, flexibility and efficiency are needed. This paper describes NASA’s 

recently completed on-orbit demonstration of a new space communications service concept 

called User Initiated Service, its implementation, results, and a discussion for infusing this 

innovation into operations. 

 

I. Introduction 

dvances in spacecraft capabilities and the simple increase in the number of spacecraft flying are calling for 

improvements to the supporting infrastructure.1,2  NASA currently operates three networks under the Space 

Communications and Navigation (SCaN) program. First, the Near Earth Network (NEN) allows earth orbiting 

spacecraft to communicate with ground stations as they pass within range. Second, the Space Network(SN), which is 

implemented with geostationary relay satellites, allows spacecraft more continuous communications as they circle 

the globe. The SN is also known as the Tracking Data Relay Satellite System or TDRSS. Thirdly, the Deep Space 

Network, with its very large aperture ground station antennas is used to communicate with planetary probes and 

similar assets. Demand will increase on all three of the current SCaN networks as the number of missions around 

earth and exploration missions beyond earth are expected to increase significantly in the future. Automation of the 

network services is one way to keep up with demand. 

 Traditionally, user missions begin the space communications operations planning process three to four weeks in 

advance of the service execution event. Users submit requests to access space link communications resources, which 

are dispositioned by the network scheduling office. Conflicts are adjudicated and resolved among scheduling and 

mission personnel. Finally, the pre-planned events are committed into a batch of operations, which are executed over 

the following week. Figure 1 illustrates this batch processing of request, disposition and pre-planned execution 

events in a rolling wave. 
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Batch processing meets the needs of the 

relatively small number of user spacecraft serviced 

by the communications network, and for missions 

with regular or deterministic communications 

needs, such as steady-state science observations or 

launch operations. However, two related trends 

drive the need for a more responsive network 

service access protocol. First, more complex 

event-triggered mission operations cannot pre-plan 

the necessary communications services weeks in 

advance due to the stochastic nature of the 

scientific phenomena of interest. Second, the 

number of mission satellites is expected to 

dramatically increase as access to space increases 

and mission concepts evolve from large multi-

functional monolithic platforms to many 

complimentary distributed platforms.3 

In contrast to pre-planned batch processing, 

flow processing involves the timely execution of 

communication service events through a link 

channel. Figure 2 illustrates flow processing of a 

communications event between a source and destination. Flow processing communications channels are prevalent in 

terrestrial wireless networks. Multiple simultaneous users are supported by sharing some aspect of the signal (e.g., 

space, frequency, bandwidth, or time), leading to higher availability at the expense of a lower effective data rate per 

user. Design concerns with flow processing for multiple access systems include characterizing the probabilistic 

demand loading, channel throughput and other considerations concerning blocking, queueing and traffic 

engineering.4  

 Space mission users have diverse needs 

and objectives. Three major drivers in space 

communications design and operations 

planning are user data volume, data delivery 

latency tolerance, and predictability of service 

demand. Constraints include spectrum policy, 

link channel access, availability, and other 

orbital or signal phenomena.5 Single access 

space link resources using high-gain terminals 

on geosynchronous relays or at ground 

stations can generally support higher data 

rates (at a given communications band) than 

multiple access link resources. Since a single 

access resource typically involves pointing narrow field-of-view terminal towards the mission spacecraft and user 

specific equipment configurations, the use of batch processing allocates this terminal resource to users one at a time, 

with setup and teardown of configuration times on the order of a few minutes between user service events. 

A new service access protocol, known as User Initiated Services (UIS), involves the automated use of 

narrowband multi-access link resources to request service from wideband single access link resources.6,7 This 

protocol enables significant improvements in user service request disposition and service event execution response 

times. Figure 3 illustrates the improved responsiveness UIS provides through the use of narrowband on-demand link 

channels to create on-the-fly batches for access to wideband resources. In the limit that the wideband resource has 

instantaneous setup and teardown configuration times it effectively becomes a flow resource. Based on experimental 

results presented in this paper, on-the-fly batch times on the order of tens of minutes are achievable with NASA’s 

currently operational SCaN link resources. 

 

 

 

 

 

 
Figure 1. Traditional batch processing of space 

communications services 

 

 
Figure 2. Illustrative flow processing of a communications 

event from source to destination 
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 In terrestrial 

communications networks, 

a network management 

architectural principle 

known as separation of 

concerns defines two 

functional blocks for 

information exchanges, a 

control plane and a data 

plane.8 Network control-

related information 

exchanges are considered to 

take place within the control 

plane, and user information 

transfers occur in the data 

plane. Both planes can 

function over the same 

physical link, if needed. For 

the UIS, all users send 

service requests (via on-demand link) and receive network responses (e.g. broadcast link) through a dedicated 

control signaling plane that supports multiple access flow processing. Requested services are typically provided 

through single access, higher rate links, considered to be part of the data plane. Figure 4 illustrates this architecture 

which includes the satellite relay and user spacecraft, along with the central infrastructure node (i.e Event Manager, 

described later) working with the mission operation centers on the ground. Please note that in Figure 4 and other 

sections of the paper the control plane in the forward direction is depicted as a broadcast service, but this is not the 

only possible UIS implementation. 

The remainder of the paper proceeds as follows. Section II discusses the messaging and protocols to support UIS, 

and describes the implementation used in the demonstration. Section III defines the demonstration system’s 

pertinent components (e.g. Event Manager, Orbit Propagator, and Service Manager), followed by the experiment 

results in Section IV. Plans for additional on-orbit experiments, future infusion to regular operations, and use of 

commercial services are all in the Future Plans, Section V. 
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Figure 3. User Initiated Services Improve Responsiveness 

 
Figure 4. UIS Control & Data Plane Concept 
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Figure 6. UIS Message Format 

 

II. User Initiated Service Messaging and Protocols 

 

The basic messaging requirements to 

enable UIS functionality are a request 

mechanism to the network, and a 

corresponding response back to the user 

with access information. In general, the user 

request contains the information about the 

requested service type, priority, quantity of 

data to downlink and other parameters. 

Likewise, the response from the network 

contains response type (e.g. simple 

acknowledgement or other) and network 

access information if available. There are a 

few obvious service types, as shown in 

Table 1, but more certainly could be added 

to the protocol as needed. The message 

protocol distinguishes between requests and responses, as well as the various types of each. 

With this protocol in place, a typical exchange between the user spacecraft and the ground Event Manager is 

illustrated in Figure 5. Notice the user first subscribes with the Event Manager, to initialize and maintain state,  

allowing service request processing. Similarly when all needed service has been acquired the user unsubscribes from 

the network, thus freeing Event Manager processing for other users.  

For the on-orbit demonstration  the experiment implemented a draft UIS over-the-air protocol defning a message 

header and data as shown in Figure 6. This defines a fixed 

message header with UIS specific parameters in addition 

to checksums on the header and message data for 

validation at the destination. TCP/IP encapsulation is used 

to send and receive UIS messages with the control plane 

links, as depicted in Figure 7. 

Table 1. Service Types 

Type Name Application 

0 Subscription/Registration Registration and Time 

Synchronization 

1 Data Volume Science Data Downlink 

2 Open Downlink Channel Telemetry 

3 Open Uplink Channel Command 

4 Radiometric Tracking 

Service 

Navigation 

5 Optometric Tracking 

Service 

Navigation 

6 Emergency Mission specific    e.g. high 

temp, low battery 

 

 
Figure 5. Typical UIS Message Sequence 
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III. Experiment Systems, Components, and Operations 

 

 The Space Communications and Navigation (SCaN) Testbed is well suited for UIS and other experimental space 

communication demonstrations. The flight system is fully reconfigurable and allows adaptive interaction with 

ground systems. Launched in 2012 this external International Space Station (ISS) payload has three software defined 

radios (SDRs) and multiple antennas for establishing links directly with the ground or other orbiting spacecraft.9 

Because the radios are software defined their functionality can be changed on the fly for different experiments by 

uploading new software.10  Also important is that the SCaN Testbed’s controlling Avionics computer has an 

experiment application programmers interface (API), allowing users to upload and execute custom experiment 

software. Figure 8 is a graphic of the SCaN Testbed flight payload, where the external antennas, fixed and steerable 

are easily seen. The enclosure houses the SDRs, Avionics computer, and other supporting subsystems.  

Since the SCaN Testbed is mounted on the ISS external truss there are antenna views of NASA’s SN TDRSS 

relays in geostationary orbit as well as views of ground stations over which the ISS orbits. The experiment makes 

significant use of the SN relays for UIS control plane functions. This demonstration specifically uses the SN’s 

demand access service (DAS) for the service request functionality because DAS can be always listening, an ideal 

UIS control plane characteristic. SCaN Testbed’s fixed zenith facing antenna establishes this control plane link. 

For data plane service connectivity, the SCaN Testbed establishes links with an S-band ground station located at 

NASA’s Glenn Research Center (GRC), as well as relay links with TDRSS. For the desired higher data rate service 

links, SCaN Testbed’s higher gain steerable antennas are employed for links with TDRSS. The Testbed uses a fixed 

nadir facing antenna for links with the GRC ground station.11 

 
 

Figure 7. UIS Message Transport Paths (Control Plane) 
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The team developed and integrated several new pieces of 

software for both the flight and ground systems enabling the UIS 

experiment for the SCaN Testbed. First, an autonomous on-board 

antenna pointing system, includes an efficient orbital propagator 

such that SCaN Testbed knows to which TDRS and when to point 

the data plane link antenna. The propagator then tracks and 

maintains the scheduled service link. Second, a new waveform, 

implemented on the SDR works with the SN’s DAS in a very 

efficient manner, allowing maximum access for making requests 

and minimizing radio power consumption. Third, an autonomous 

service manager operates on the flight avionics, initiating 

requests, processing service window responses, sending 

information to the antenna pointing system, and configuring the 

SDRs appropriately. Fourth, an event manager on the ground 

receives incoming requests from users and queries the SCaN 

Networks for available time slots. These four main software 

components will be described in more detail in the following 

subsections. 

A. Orbit Propagator 

By their very nature, orbits for most satellites, natural or artificial, are predictable within some degree of 

accuracy. There are several ways to compute an orbital prediction, however, the limited processing capacity and 

memory resources onboard a typical spacecraft requires this be done most efficiently. Previously, all SCaN Testbed 

experiment operations used an uploaded track file created from ground calculations dictating each pointing step for 

the gimbaled antenna. For UIS experiments that track file is effectively created on-board SCaN Testbed in the 

Avionics as needed for a granted service request. This on-board capability allows relatively small uploads of access 

information for granted services, such as a Ka-band access with TDRSS, thus reducing the necessary control plane 

bandwidth.  

B. Demand Access Service(DAS) Waveform 

NASA’s Space Network DAS provides continuous and automated communications links via the TDRSS 

multiple access return capabilities. The service is enabled with the multiple access beamformer subsystem, which 

allows the SN to effectively track multiple users simultaneously. The DAS receivers work with the programmable 

telemetry processor, allowing users to retrieve downlinked data via the Internet.12 For the UIS SCaN Testbed DAS 

waveform implementation several configurable parameters were specifically chosen. First, the lowest DAS signaling 

rate of 2 kilo samples-per-second was chosen with the goal of maximizing link margin and access time during the 

ISS orbit. Since a fixed antenna is used for the DAS link, to leave the steerable antennas free for data downlinks, 

lowering the DAS rate allows the link to work significantly off-boresight while transmitting to a TDRS. Secondly, 

the time to transmit the UIS request is minimized to about 15 seconds. This is close to the minimum time the DAS 

receivers need to synchronize on the spread-spectrum BPSK signal. The waveform uses a sequence of idle frames 

before the 260 byte UIS request message is sent near the end of the 15 second transmission. 

C. Service Manager 

Once started, the on-board Service Manager monitors the spacecraft systems to determine when and how often 

service is requested from the network. If a data downlink or maintenance window is needed, then an UIS request is 

sent via the DAS Waveform. In the SCaN Testbed demonstration, the Service Manager responds to a buffer of data 

exceeding a configurable threshold. Upon receiving a response to the UIS request from the network the Service 

Manager configures the antenna system and appropriate SDR for the granted access. During an access event the 

Service Manager orchestrates the science data transfer from storage buffers to the downlinking SDR, or whatever 

data transfer needs to occur, downlink and/or uplink. 

D. Event Manager 

On the ground an Event Manager receives requests from network user spacecraft and works with the Space 

Network Access System (SNAS) to schedule appropriate service. It works with the real-time period as opposed to 

the forecast-period scheduling. For the SCaN Testbed experiment, unscheduled and available TDRSS time was 

requested, for which there is typically access events available within an orbit, depending on the minimum event 

 
Figure 8. SCaN Testbed Flight Payload 
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duration required. In the case where a single scheduled event does not meet all of the user’s total request, i.e. not 

enough time to downlink all data, additional UIS requests come from the user. Within the request protocol there is a 

minimum link time so that the Event Manager doesn’t schedule events too short to be useful. Details about the UIS 

protocol are described in section II. 

Conflict resolution between users is also a function of the Event Manager. Since there is only one SCaN Testbed, 

additional user spacecraft are simulated on the ground with separate computers running a version of the flight 

Service Manager. These simulated users can be configured to act as various mission types, some with periodic 

requests for service or more random, some with large science data collection rates or smaller rates. Currently a rule-

based approach is used to resolve user conflicts for service, but there are machine learning techniques being 

explored to handle this function more optimally. A more intelligent Event Manager could also target anomaly 

detection in the system and/or individual user. 

E. System Operations 

The UIS experiment runs on SCaN Testbed in conjunction with the SN and GRC ground station link 

connectivity, as illustrated in Figure 9. Both the control plane signals for service requests/responses (green) and the 

data plane service links (blue) are shown in the figure. The TDRSS was used for both control and data plane links, 

while the GRC ground station was only used for scheduled service downlinks. The ground stations associated with 

the SN relay TDRS's are located at White Sands Complex (WSC) and the Guam ground terminal, which are also 

where the DAS receivers reside. There are terrestrial connections from and to WSC for the GRC mission operations 

center (MOC) that carry the received UIS requests, as well as the request responses from the Event Manager. For 

this experiment a scheduled multiple access forward link service was used to transmit the responses back to SCaN 

Testbed. 
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Figure 9.  SCaN Testbed UIS Experiment System Configuration 
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IV. Flight Testing and Results 

 

UIS testing using the SCaN Testbed took place on six separate days in August and September of 2017. Initially 

testing used only SNAS scheduled TDRSS time, and then later access times to the GRC ground station were added. 

Emulated science data was generated on-board SCaN Testbed continuously, triggering a request for service message 

from the Service Manager when the buffers reached a configurable fill level. During test days the “any TDRS” mode 

was setup with the SN’s DAS service such that the UIS request transmission could be picked up anywhere in the ISS 

orbit. However, there were small gaps in coverage when the non-steerable antenna was extremely off-boresight with 

a TDRS or there was blockage from ISS structure (e.g. solar arrays). Receiving acknowledgements and access 

information from the ground Event Manager back to SCaN Testbed was more challenging. 

The broadcast service of the SN is a future service of the Next Generation Architecture.6 To emulate the 

broadcast service the experiment employed a scheduled forward service with TDRSS to emulate the broadcast (see 

Figure 7). However, with other SN users in orbit, this service could not be scheduled continuously, resulting in 

several breaks in the UIS control plane path back to SCaN Testbed. The on-board Service Manager is configured to 

wait five minutes for a request acknowledgement, upon which time the request is resent with the assumption it was 

not received the first time. The service identification number in the message header allows the ground Event 

Manager to ignore multiple repeat requests during times when the control plane path back to SCaN Testbed was 

unavailable.  

Whenever the forward link was 

available and the DAS link was 

steady, there was a quick turn-

around from request to potential 

data plane access. Some requests 

resulted in high data rate access 

events only 15 minutes later. The 

primary turn-around limitation is 

the time needed to configure SCaN 

Testbed SDRs and the antenna 

pointing system, as well as time 

needed for TDRSS to slew an 

antenna toward the user location. 

As illustrated in Figure 10, these 

UIS operations are a dramatic 

improvement from SCaN Testbed’s 

previously used three week in-

advance forecast period requests. 

During the six days of the 

experiment a total of 17 requests 

were granted and executed, 

resulting in over 11 GB of data 

downlinked. 

A. Single SDR Operations 

All user spacecraft may not have multiple radios so as to dedicate one solely to UIS control plane operations. 

Therefore, tests using just one SDR on-board SCaN Testbed for both control and data plane links were executed. 

Exploiting one of the key advantages of SDRs, reprogramability, allows one radio to perform different 

communication functions during different parts to the mission. For UIS the single SDR is primarily programmed 

with the control plane functions, which in the case of SCaN Testbed is the DAS transmit waveform and the 

emulated broadcast receive waveform. After a request has been made, acknowledged, and access information 

received and acknowledged, the SDR is reconfigured per the specific data plane access. On SCaN Testbed not only 

does the SDR’s waveform need to be changed, but the antenna connection is re-routed from the low-gain non-

steerable to the medium steerable antenna, or to the earth-facing antenna if it is a ground station access. Once the 

downlink access is finished the SDR and antenna system is re-configured back to the control plane mode and starts 

listening for any “broadcasts.”  Three UIS requests were executed while in this single SDR operations mode, each 

transition from control to data plane and vice versa taking about one minute. 

 
Figure 10. SCaN Testbed UIS Response Time 

versus Traditional Practice 
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B. Automated Eclipse Tracking 

A unique opportunity presented itself in August with the North American solar eclipse. The path of the ISS 

passed through the moon’s shadow, at least partially, for three orbits. The steerable antenna controlled by the orbit 

propagator software can autonomously track any celestial object. On August 21, 2017 the SCaN Testbed was sent 

access information via the UIS protocol to autonomously track the sun, instead of a TDRS. As the ISS moved in and 

out of the moon’s shadow RF spectrum samples were collected with the Ka-band SDR. Over 2 gigabytes of raw 

ADC samples were collected during three orbits, some sampling in the eclipse zone and some full sun for 

comparison. This scenario is representative of a science mission collecting data from instruments.  

V. Future Work 

A. Phase II testing with SCaN Testbed 

There are several dimensions of automated space communications towards which this work can be expanded. In 

the near future there are plans to overlay various networking applications on the UIS operations. These applications 

may include disruptive tolerant networking, secure transmissions, and cross-layer optimization.13 Adaptive 

waveforms previously run on SCaN Testbed can be integrated to UIS operations so that the maximum data rate is 

achieved, for example, based on the real-time link margin.14    

Further benefits of optimization and adaptability may be incorporated into system automation by applying 

cognitive techniques. Network management may improve by learning user request patterns and specific relay 

satellite differences. For example, the Event Manager may be able to anticipate services requests with missions that 

have a regular cadence, and a spacecraft may learn how to optimize service request frequency and duration. Service 

Manager simulated users from this demonstration allow various cognitive scenarios and machine learning 

approaches to be explored.  

B. Commercial Services 

The TDRSS constellation will be replenished beginning in the 2030 time frame, as the satellites reach their 

design lifetime. NASA is considering the use of commercially provided RF and optical space-to-space SN services 

to augment any unique NASA owned and operated elements that remain. The dual use of NASA and commercial 

assets must be considered as the UIS architecture evolves.  

Today the NEN uses a combination of both commercial and NASA-owned ground assets. Selection, use, and 

scheduling of these systems is controlled by NASA and occurs on a pre-planned basis determined by mission needs, 

station availability, and cost of use. However, employing commercially provided SN services is a significant 

cultural, technical, and enterprise shift in mission services and operations. The future NASA SN architecture is 

envisioned as a disaggregated set of providers and space elements providing a more scalable, extensible, and 

resilient network. Disaggregation allows the use of multiple independent providers to obtain both routine and critical 

services, while preventing dependence on any one supplier. Disaggregation of services allows placing capability 

where and when needed at lower cost than the multi-service per spacecraft approach used today. A tradeoff is 

underway of system complexity with user spacecraft burden, life-cycle costs and technical cost risks as the future 

architecture definition continues. 

The UIS architecture described in this paper, is a key element of the future NASA space architecture. 

Simplifying the scheduling of spacecraft services among both NASA assets and potentially multiple commercial 

providers will require an automated process to improve the availability of resources to the missions and the efficient 

use of space and ground assets. Envision the UIS common scheduling system hosting both a network service and 

event manager extended to include not only NASA’s space assets but also include other commercial assets available 

for NASA’s use.  With the disaggregation of services, the broadcast service and low rate demand access service 

could be provided by either a NASA asset or commercial service. The system could then schedule a data or other 

service from a NASA or commercial asset. Each assets location (orbital or ground), capability, capacity, and 

functionality would be known by the network service manager and allocated appropriately by the event manager. 

While more complex (although well within the functionality of the software) and taking into account the negotiated 

use allotted to each asset, the UIS allows better management of the data services, asset selection, satisfying mission 

needs, and accounting of service and use across the entire enterprise. 

C. Infusion to Operations 

Traditionally, mission users undergo extensive link testing during the integration lifecycle phase to ensure 

compatibility with the provider network prior to launch and operations. Similarly, operational infusion of control 

plane services such as UIS will require application-layer testing to ensure proper behaviors and control information 
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flows between the user and network. While this experiment has demonstrated the feasibility and a small set of the 

potential benefits of UIS technology, further work is necessary to demonstrate the scalability of the technology for 

multiple hardware and software environments to facilitate operational infusion.  

 The growing prevalence of cubesats and other small satellite platforms present an ideal early adopter user set 

due to their generally higher technology risk tolerance and motivation to avoid costs through automation. In 

particular, it will be necessary to demonstrate that the UIS flight software can run effectively within the more limited 

processing and storage resource constraints of cubesat and small satellite platforms. Additionally, to facilitate wide 

scale adoption, the UIS flight software must be capable of running in multiple mission platform hardware and real-

time software environments. Further work is needed to demonstrate UIS flight software encapsulation or refactoring 

into emerging flight software environments popular with cubesat and small satellite users, such as NASA’s Core 

Flight Software.15  

VI. Conclusion 

With ever increasing use of space for government and commercial purposes, changes to the supporting network 

of communications services are necessary. This paper has described one approach to provide users with more timely 

network access with User Initiated Services. This concept, including a draft UIS messaging protocol, was 

demonstrated using NASA’s SCaN Testbed orbiting on the ISS. Over 200 minutes of network service was 

autonomously requested and utilized during the experiment, scheduling with as little as 15 minutes lead time instead 

of the traditional three weeks.  
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